MARK SCHEME for the May/June 2014 series

0620 CHEMISTRY

0620/33

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2		e 2 Mark Scheme Syllabus IGCSE – May/June 2014 0620		Paper 33	
1	(a)	car	pon dioxide (1)	0020	[1]	
	(b)	pro	pene (1)		[1]	
	(c)	kry	oton (1)		[1]	
	(d)	nitr	ogen (1)		[1]	
	(e)	fluc	rine (1)		[1]	
	(f)	sulf	ur dioxide (1)		[1]	
	(g)	hyd	rogen (1)		[1]	
					[Total: 7]	
2	(a)	par mo coll mo	three from: ticles have more energy (1) ve faster (1) ide more frequently (1) re particles have energy greater than E _a dance: more colliding molecules have enough energy	to react is worth (2)	[3]	
	(b)	par	ticles move in all directions/randomly <u>in both</u> liquids ar	nd gases (1)		
			oonds/very weak forces between particles in gases (1) ecules can move apart/separate (to fill entire volume)			
			ds/forces/IMF between particles in liquids (1) ecules cannot move apart/separate (so fixed volume i	n liquids) (1)	[3]	
					[Total: 6]	
3	(a)	(i)	enzymes (1)		[1]	
		(ii)	reduces growth of microbes/rate of reproduction microbes are dormant (1) fewer (enzymes) to decay food (1)	of microbes is lowe	er/	
			OR enzymes less efficient at lower temperatures (1) slower reaction rate (1)		[2]	
	(b)	res	rect linkage (1) of molecule correct and continuation shown (1) her product is) water (1)		[3]	

Page 3				Mark Scheme	Syllabus	Paper
				IGCSE – May/June 2014	0620	33
	 (c) any three from: photosynthesis (1) light/photochemical (1) chlorophyll/chloroplasts (1) carbon dioxide and water needed (1) (glucose and) oxygen (1) 					[3] [Total: 9]
4	(a)	(i)	fract	limestone/calcium carbonate (1) ional distillation (1) d air (1)		[3]
		(ii)		two of the oxides, C, S, P and Si, mentioned (1) on dioxide and sulfur dioxide escape/are gases ((1)	
	phosphorus oxide or silicon(IV) oxide react with calcium oxide/ phosphorus oxide or silicon(IV) oxide are acidic and calcium oxide is basic (
			to fo	rm a slag or calcium silicate or calcium phospha	te (1)	
			must	t have correct equation for one of the above reac	tions (1)	[5]
	(b)	(i)		e/rows/regular arrangement of cations/positive ile/free/delocalised/sea of electrons (1)	ions/Fe ²⁺ (1)	[2]
		(ii)		rows of ions/ions can move past each other (1) out the metal breaking/bonds are not directional/	not rigid (1)	[2]
				on particles/atoms different size (1) rents movement of rows, etc. (1)		[2]
						[Total: 14]
5	(a)	 (a) faster reaction rate (1) higher collision rate (1) greater yield or favour RHS (1) pressure favours products because it has lower volume/fewer product molecules () [4]
	•••			emperature favour endothermic reaction (1) e back reaction/left hand side/reactants (1) ield (1)		[3]
	(c)	(i)	grea	iter surface area (1)		[1]
		(ii)	can	ease reaction rate (1) use a lower temperature to have an economic rat not decrease yield (by increasing temperature).	te (1)	[2]

PMT

	I U	90	IGCSE – May/June 2014 0620	33
	(d)	only OR add only OR incr	ld water (1) Iy ammonia will dissolve (1)	[2]
	(e)	thir fou all f two	cond line $+3 \times 155 = +465$ ird line $-3 \times 280 = (-)840$ urth line $-3 \times 565 = (-)1695$ three correct (2) o correct (1) 70 + 465 = 1635	
		840	0 + 1695 = 2535 th numerically correct (1)	
			othermic reaction with some reasoning (1)	[4]
				[Total: 16]
6	(a)	(i)	C and H <u>only</u> (1)	[1]
		(ii)	only single bonds (1)	[1]
	(b)	(i)	$C_{n}H_{2n+2}(1)$	[1]
	(0)	(i) (ii)		[']
		()	$(14 \times 12) + 30 = 198$ (g) (1)	[2]
	(c)	(i)	C_9H_{20} + 14 $O_2 \rightarrow 9CO_2$ + 10 H_2O (2)	[2]
		(ii)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
			For evidence of method (1) for equation as above (2)	[3]
	(서)	(1)	alkanos in potrol/fuel/solvent (1)	
	(d)	(1)	alkanesin petrol/fuel/solvent (1)alkenesto make alcohols/plastics/polymers/solvents (1)hydrogento make ammonia/fuel/fuel cells, etc. (1)	[3]
		(ii)	a correct equation for example: $C_{10}H_{22} \rightarrow C_8H_{16} + C_2H_4 + H_2$ (1)	[1]

Mark Scheme

Page 4

PMT

Paper

Syllabus

	Pa	ge 5		Mark Scheme	Syllabus	Paper	
				IGCSE – May/June 2014	0620	33	
	(e)	(i) light or lead tetraethyl/catalyst/high temperature (1)					
		(ii)	CH ₃ -	-CHCI–CH ₃ (1)		[1]	
						[Total: 16]	
7	(a)	bau	xite (1)		[1]	
	(b)	electrolyte alumina/aluminium oxide dissolved in molten cryolite (1) use cryolite to reduce mp/comparable idea/temperature of electrolyte 900 to $1000^{\circ}C(1)$ electrodes carbon (1) aluminium formed at cathode/ $Al^{3^{+}} + 3e \rightarrow Al(1)$ oxygen formed at anode/ $2O^{2^{-}} \rightarrow O_2 + 4e(1)$ anode burns/reacts to carbon dioxide/ $C + O_2 \rightarrow CO_2(1)$					
	(c)	(i)	food	containers/window frames/cooking foil/cars/bikes	s/drink cans (1)	[1]	
		(ii)	40H	$^{-} \rightarrow O_2 + 2H_2O + 4e$ (2)		[2]	
			4A <i>l</i> -	$+ 3O_2 \rightarrow 2Al_2O_3 (2)$		[2]	
						[Total: 12]	